Data Mining:

Model Evaluation

April 16, 2013

Issues: Evaluating Classification Methods

- Accuracy
 - classifier accuracy: predicting class label
 - predictor accuracy: guessing value of predicted attributes
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Predictor Error Measures

- Measure predictor accuracy: measure how far off the predicted value is from the actual known value
- **Loss function**: measures the error betw. y_i and the predicted value y_i'
 - Absolute error: | y_i y_i'|
 - Squared error: $(y_i y_i')^2$
- Test error (generalization error): the average loss over the test set
 Mean absolute error: $\frac{\sum_{i=1}^{d} |y_i y_i'|}{d}$ Mean squared error: $\frac{\sum_{i=1}^{d} (y_i y_i')^2}{\sum_{i=1}^{d} |y_i y_i'|}$ Relative squared error: $\frac{\sum_{i=1}^{d} (y_i y_i')^2}{\sum_{i=1}^{d} |y_i \overline{y}|}$

The mean squared-error exaggerates the presence of outliers Popularly use (square) root mean-square error, similarly, root relative squared error

Evaluating the Accuracy of a Classifier or Predictor (I)

- Holdout method
 - Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
 - Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- <u>Cross-validation</u> (*k*-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - Leave-one-out: k folds where k = # of tuples, for small sized data
 - <u>Stratified cross-validation</u>: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Evaluating the Accuracy of a Classifier or Predictor (II)

- Bootstrap
 - Works well with small data sets
 - Samples the given training tuples uniformly *with replacement*
 - i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set

Several boostrap methods, and a common one is .632 boostrap

- Suppose we are given a data set of d tuples. The data set is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data will end up in the bootstrap, and the remaining 36.8% will form the test set (since (1 1/d)^d ≈ e⁻¹ = 0.368)
- Repeat the sampling procedure k times, overall accuracy of the model: $k = \frac{k}{2}$

$$acc(M) = \sum_{i=1}^{\infty} (0.632 \times acc(M_i)_{test_set} + 0.368 \times acc(M_i)_{train_set})$$

Model Evaluation

- Metrics for Performance Evaluation
 How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS				
		Class=Yes	Class=No	ć	
ACTUAL	Class=Yes	a (TP)	b (FN)	k r	
CLASS	Class=No	c (FP)	d (TN)		

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

		PREDICTED CLASS			
			Class=Yes	Class=No	
	ACTUAL	Class=Yes	a (TP)	b (FN)	
	CLASS	Class=No	c (FP)	d (TN)	
Maat		ad matric			

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Classifier Accuracy Measures

2								
		Predi						
	classes	buy_computer = yes	buy_computer = no	total	recognition(%)			
	buy_computer = yes	6954	46	7000	99.34			
	buy_computer = no	412	2588	3000	86.27			
	total	7366	2634	10000	95.52			

- Accuracy of a classifier M, acc(M): percentage of test set tuples that are correctly classified by the model M
 - Error rate (misclassification rate) of M = 1 acc(M)
 - Given *m* classes, *CM_{i,j}*, an entry in a confusion matrix, indicates # of tuples in class *i* that are labeled by the classifier as class *j*
- Alternative accuracy measures (e.g., for cancer diagnosis) sensitivity = TP/TP+FN /* true positive recognition rate */ specificity = TN/TN+FP /* true negative recognition rate */

This model can also be used for cost-benefit analysis April 16, 2013

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)	
	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDI	CTED (CLASS	
	C(i j)	+	-	
ACTUAL	+	-1	100	
OLAGO	-	1	0	

Model M ₁	PREDICTED CLASS			
ACTUAL CLASS		+	-	
	+	150	40	
	-	60	250	

Accuracy = 80%Cost = 3910

Model M ₂	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	250	45	
	-	5	200	

Accuracy = 90%Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	а	b		
CLASS	Class=No	С	d		

Cost	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	р	q		
CLASS	Class=No	q	р		

Accuracy is proportional to cost if 1. C(Yes|No)=C(No|Yes) = q 2. C(Yes|Yes)=C(No|No) = p

$$\mathsf{N} = \mathsf{a} + \mathsf{b} + \mathsf{c} + \mathsf{d}$$

Accuracy = (a + d)/N

Cost =
$$p (a + d) + q (b + c)$$

= $p (a + d) + q (N - a - d)$
= $q N - (q - p)(a + d)$
= $N [q - (q-p) \times Accuracy]$

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) = $\frac{a}{a+b}$
F - measure (F) = $\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Model Evaluation

- Metrics for Performance Evaluation
 How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Model Evaluation

- Metrics for Performance Evaluation
 How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

 In general, No model consistently outperform the other

- M₁ is better for small FPR
- M₂ is better for large FPR