
Data Mining:  
  
 Model Evaluation 
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Issues: Evaluating Classification Methods 

 Accuracy 
 classifier accuracy: predicting class label 
 predictor accuracy: guessing value of predicted 

attributes 
 Speed 

 time to construct the model (training time) 
 time to use the model (classification/prediction time) 

 Robustness: handling noise and missing values 
 Scalability: efficiency in disk-resident databases  
 Interpretability 

 understanding and insight provided by the model 
 Other measures, e.g., goodness of rules, such as decision 

tree size or compactness of classification rules 
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Predictor Error Measures 

 Measure predictor accuracy: measure how far off the predicted value is 
from the actual known value 

 Loss function: measures the error betw. yi and the predicted value yi’ 
 Absolute error: | yi – yi’|  
 Squared error:  (yi – yi’)2  

 Test error (generalization error): the average loss over the test set 
 Mean absolute error:                  Mean squared error: 

 
 Relative absolute error:               Relative squared error: 
 
The mean squared-error exaggerates the presence of outliers 
Popularly use (square) root mean-square error, similarly, root relative 

squared error 
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Evaluating the Accuracy of a Classifier or 
Predictor (I) 

 Holdout method 
 Given data is randomly partitioned into two independent sets 

 Training set (e.g., 2/3) for model construction 
 Test set (e.g., 1/3) for accuracy estimation 

 Random sampling: a variation of holdout 
 Repeat holdout k times, accuracy = avg. of the accuracies 

obtained 
 Cross-validation (k-fold, where k = 10 is most popular) 

 Randomly partition the data into k mutually exclusive subsets, 
each approximately equal size 

 At i-th iteration, use Di as test set and others as training set 
 Leave-one-out: k folds where k = # of tuples, for small sized data 
 Stratified cross-validation: folds are stratified so that class dist. in 

each fold is approx. the same as that in the initial data 
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 Bootstrap 
 Works well with small data sets 
 Samples the given training tuples uniformly with replacement 

 i.e., each time a tuple is selected, it is equally likely to be 
selected again and re-added to the training set 

 Several boostrap methods, and a common one is .632 boostrap 
 Suppose we are given a data set of d tuples.  The data set is sampled d 

times, with replacement, resulting in a training set of d samples.  The data 
tuples that did not make it into the training set end up forming the test set.  
About 63.2% of the original data will end up in the bootstrap, and the 
remaining 36.8% will form the test set (since (1 – 1/d)d ≈ e-1 = 0.368) 

 Repeat the sampling procedure k times, overall accuracy of the 
model: 
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Evaluating the Accuracy of a Classifier or 
Predictor (II) 



Model Evaluation 

 Metrics for Performance Evaluation 
 How to evaluate the performance of a model? 
 

 Methods for Performance Evaluation 
 How to obtain reliable estimates? 

 
 Methods for Model Comparison 

 How to compare the relative performance among 
competing models? 
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Metrics for Performance Evaluation 

 Focus on the predictive capability of a model 
 Rather than how fast it takes to classify or build models, 

scalability, etc. 
 Confusion Matrix: 

PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes a (TP) b (FN) 

Class=No c (FP) d (TN) 

a: TP (true positive) 

b: FN (false 
negative) 

c: FP (false 
positive) 

d: TN (true 
negative) April 16, 2013 7 



 
 
 
 
 
 

 Most widely-used metric: 
 

PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes a 
(TP) 

b 
(FN) 

Class=No c 
(FP) 

d 
(TN) 

FNFPTNTP
TNTP
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Metrics for Performance Evaluation… 



Classifier Accuracy Measures 

 Accuracy of a classifier M, acc(M): percentage of test set tuples that are 
correctly classified by the model M 
 Error rate (misclassification rate) of M = 1 – acc(M) 
 Given m classes, CMi,j, an entry in a confusion matrix, indicates # 

of tuples in class i  that are labeled by the classifier as class j 
 Alternative accuracy measures (e.g., for cancer diagnosis) 

sensitivity = TP/TP+FN             /* true positive recognition rate */ 
specificity = TN/TN+FP             /* true negative recognition rate */ 

 
This model can also be used for cost-benefit analysis 

Predicted 

classes buy_computer = yes buy_computer = no total recognition(%) 

buy_computer = yes 6954 46 7000 99.34 

buy_computer = no 412 2588 3000 86.27 

total 7366 2634 10000 95.52 
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Limitation of Accuracy 

 Consider a 2-class problem 
 Number of Class 0 examples = 9990 
 Number of Class 1 examples = 10 

 
 If model predicts everything to be class 0, 

accuracy is 9990/10000 = 99.9 % 
 Accuracy is misleading because model does not detect 

any class 1 example 
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Cost Matrix 

      PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

C(i|j) Class=Yes Class=No 

Class=Yes C(Yes|Yes) C(No|Yes) 

Class=No C(Yes|No) C(No|No) 

C(i|j): Cost of misclassifying class j example as class i 
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Computing Cost of Classification 
Cost 

Matrix 
PREDICTED CLASS 

 
ACTUAL 
CLASS 

C(i|j) + - 
+ -1 100 
- 1 0 

Model 
M1 

PREDICTED CLASS 

 
ACTUAL 
CLASS 

+ - 
+ 150 40 
- 60 250 

Model 
M2 

PREDICTED CLASS 

 
ACTUAL 
CLASS 

+ - 
+ 250 45 
- 5 200 

Accuracy = 80% 
Cost = 3910 

Accuracy = 90% 
Cost = 4255 
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Cost vs Accuracy 

Count PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes a b 

Class=No c d 

Cost PREDICTED CLASS 

 
 

ACTUAL 
CLASS 

Class=Yes Class=No 

Class=Yes p q 

Class=No q p 

N = a + b + c + d 

 

Accuracy = (a + d)/N 

 

Cost = p (a + d) + q (b + c) 

        = p (a + d) + q (N – a – d) 

        = q N – (q – p)(a + d) 

        = N [q – (q-p) × Accuracy]  

 

Accuracy is proportional to cost if 
1. C(Yes|No)=C(No|Yes) = q  
2. C(Yes|Yes)=C(No|No) = p 

April 16, 2013 13 



Cost-Sensitive Measures 
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(r) Recall

 (p)Precision 

 Precision is biased towards C(Yes|Yes) & C(Yes|No) 
 Recall is biased towards C(Yes|Yes) & C(No|Yes) 
 F-measure is biased towards all except C(No|No) 
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Model Evaluation 

 Metrics for Performance Evaluation 
 How to evaluate the performance of a model? 
 

 Methods for Performance Evaluation 
 How to obtain reliable estimates? 

 
 Methods for Model Comparison 

 How to compare the relative performance among 
competing models? 
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Methods for Performance Evaluation 

 How to obtain a reliable estimate of performance? 
 

 Performance of a model may depend on other 
factors besides the learning algorithm: 
 Class distribution 
 Cost of misclassification 
 Size of training and test sets 
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Learning Curve 
 Learning curve shows 

how accuracy changes 
with varying sample size 

 Requires a sampling 
schedule for creating 
learning curve: 
 Arithmetic sampling 

(Langley, et al) 
 Geometric sampling 

(Provost et al) 
 
Effect of small sample size: 

- Bias in the estimate 
- Variance of estimate 
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Methods of Estimation 

 Holdout 
 Reserve 2/3 for training and 1/3 for testing  

 Random subsampling 
 Repeated holdout 

 Cross validation 
 Partition data into k disjoint subsets 
 k-fold: train on k-1 partitions, test on the remaining one 
 Leave-one-out:   k=n 

 Stratified sampling  
 oversampling vs undersampling 

 Bootstrap 
 Sampling with replacement 
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Model Evaluation 

 Metrics for Performance Evaluation 
 How to evaluate the performance of a model? 
 

 Methods for Performance Evaluation 
 How to obtain reliable estimates? 

 
 Methods for Model Comparison 

 How to compare the relative performance among 
competing models? 
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ROC (Receiver Operating Characteristic) 

 Developed in 1950s for signal detection theory to 
analyze noisy signals  
 Characterize the trade-off between positive hits and 

false alarms 
 ROC curve plots TP (on the y-axis) against FP 

(on the x-axis) 
 Performance of each classifier represented as a 

point on the ROC curve 
 changing the threshold of algorithm, sample distribution 

or cost matrix changes the location of the point 
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ROC Curve 

At threshold t: 

TP=0.5, FN=0.5, FP=0.12, FN=0.88 

- 1-dimensional data set containing 2 classes (positive and negative) 

- any points located at x > t is classified as positive 
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ROC Curve 

(TP,FP): 
 (0,0): declare everything 

          to be negative class 
 (1,1): declare everything 

         to be positive class 
 (1,0): ideal 
 
 Diagonal line: 

 Random guessing 
 Below diagonal line: 

  prediction is opposite of 
the true class 
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Using ROC for Model Comparison 
 In general, No model 

consistently 
outperform the other 
 M1 is better for 

small FPR 
 M2 is better for 

large FPR 
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